
J. Fluid Mech. (2006), vol. 546, pp. 363–393. c© 2005 Cambridge University Press

doi:10.1017/S0022112005007172 Printed in the United Kingdom

363

An asymptotic theory for the propagation
of a surface-catalysed flame in a tube

By F. ADAMSON1, J. B ILLINGHAM2,
A. C. KING1† AND K. KENDALL 3

1Department of Mathematics and Statistics, The University of Birmingham, Edgbaston,
Birmingham B15 2TT, UK

2School of Mathematical Sciences, The University of Nottingham, University Park,
Nottingham NG7 2RD, UK

3Department of Chemical Engineering, The University of Birmingham, Edgbaston,
Birmingham B15 2TT, UK

(Received 4 March 2005 and in revised form 11 July 2005)

Experiments have shown that when a mixture of fuel and oxygen is passed through
a zirconia tube whose inner surface is coated with a catalyst, and then ignited at the
end of the tube, a reaction front, or flame, propagates back along the tube towards the
fuel inlet. The reaction front is visible as a red hot region moving at a speed of a few
millimetres per second. In this paper we study a model of the flow, which takes into
account diffusion, advection and chemical reaction at the inner surface of the tube.
By assuming that the flame propagates at a constant speed without change of form,
we can formulate a steady problem in a frame of reference moving with the reaction
front. This is solved using the method of matched asymptotic expansions, assuming
that the Reynolds and Damköhler numbers are large. We present numerical and,
where possible, analytical results, first when the change in fluid density is small (a
simplistic but informative limit) and secondly in the variable-density case. The speed
of the travelling wave decreases as the critical temperature of the surface reaction
increases and as the mass flow rate of fuel increases. We also make a comparison
between our results and some preliminary experiments.

1. Introduction
In this paper we construct and analyse a mathematical model for a novel, surface-

catalysed reaction front that has been observed in an experiment performed recently
on a model fuel cell (Lefevre 2003). The experimental set-up is shown in figure 1. A
mixture of fuel and oxygen is fed into one end of a long thin tube of zirconia (the
inlet). The opposite end of the tube (the outlet) is heated by igniting the gas so as
to form a premixed flame at the end of the tube. The increased temperature at the
outlet starts a reaction on the inner surface of the zirconia, where a high-surface-area
platinum catalyst is present, and the heat produced by the reaction causes the tube
to glow red. When the premixed flame at the end of the tube is extinguished, the
red glow remains, and then moves at a speed of a few millimetres per second along
the tube towards the inlet. The motion of the reaction front is shown in figure 2;
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Figure 1. Schematic of the experiment.

(a) (b)

(c)

Figure 2. The observed propagation of the reaction front, or surface-catalysed flame. (a) At
time t = 0.0 s the reaction front is at d = 80 mm. (b) At time t = 6.5 s the reaction front has
progressed to d = 77 mm. (c) At time t = 12.7 s the reaction front has progressed to d = 74 mm.

fuel flows along the tube from the left and the outlet is at a distance shown by
d =90 mm on the ruler. The speed of the reaction front calculated from these pictures
is about 0.46 mm s−1. This speed decreases as the flow rate of fuel coming into the
tube increases, and increases with the amount of catalyst on the inner surface of the
tube. Note that this reaction front, or surface-catalysed flame, has some features of a
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premixed flame and some of a diffusion flame, but is distinct from either: although
the fuel and air are premixed, reaction only occurs at the wall of the tube, so the
dynamics are controlled by the rate at which the mixture can be transported to the
wall by diffusion.

There is an obvious analogy between this phenomenon and the classical experiment
of Davy (1817). In his experiment, Davy heated a fine platinum wire and introduced
it into a mixture of methane and air. He noted:

“. . . the oxygene (sic) and coal gas in contact with the hot wire combined without
flame, and yet produced heat enough to preserve the wire ignited, and to keep up their
own combustion.”

Apart from its intrinsic scientific interest, an understanding of surface-catalysed
flames could improve our understanding of the way a fuel cell behaves as it is heated
to its working temperature. A fuel cell is a device that converts chemical energy into
electrical energy. It differs from a battery in that it is continuously supplied with fuel
rather than simply using a finite amount of fuel stored within it. The fuel cell is one
of the cleanest and most efficient forms of energy production available at the moment
(Winkler 1994; Kumar, Krumpelt & Myles 1992). There are several types of fuel cell
in development which have different applications. The solid oxide fuel cell (SOFC)
consists of an electrolyte layer made from a solid ceramic, zirconia (ZrO2), which
at high temperatures (usually at least 700 ◦C) can conduct oxygen ions (Singhal &
Kendall 2003). Fuel reacts on one side of the zirconia, where a catalyst is present,
reducing the oxygen concentration on this side. The other side, which is exposed to
the air, remains at the atmospheric oxygen concentration. The fuel burning process
therefore results in a gradient in oxygen concentration across the zirconia electrolyte.
An electrical connection is placed across the zirconia, the cathode on the oxygen-rich
side and the anode on the fuel side. At the cathode, electrons combine with oxygen
molecules to form negatively charged oxygen ions, which travel through the zirconia
down the concentration gradient. On reaching the anode, the oxygen ions release
electrons and react with fuel. The electrons continue around the circuit back to the
cathode.

An important design feature of the SOFC is that the oxygen-rich and fuel sides
of the electrolyte must be kept separate. This ensures that the oxygen travels only
through the electrolyte and produces an electrical current. Any leakage of oxygen
between the two sides of the fuel cell reduces its efficiency. The tubular SOFC is made
up of a tube of zirconia with tubular electrodes on either side. This arrangement
helps to solve the problem of sealing one side from the other. The tubular design we
study was developed by Kendall & Prica (1994) and Finnerty et al. (1998). Fuel flows
through the zirconia tube and reacts with oxygen at the inner surface which is coated
with a platinum catalyst. The tubes used in these cells are extruded from powders
dispersed in polymer solutions which makes the cells more resistant to thermal and
mechanical shocks. These cells can therefore be used for small-scale applications as
they are not likely to break during rapid start-up.

Previous mathematical analysis of the tubular SOFC has considered the cell running
under isothermal steady-state conditions (Cooper 2000; Cooper, Billingham & King
2000). The surface-catalysed reaction front that we study here is relevant to the initial
heating and start-up of this type of fuel cell. We shall neglect electrochemical effects
in our analysis, since the surface-catalysed reaction front is observed in the absence of
electrochemical activity. In the following section we formulate a mathematical model
that describes the flow field, temperature distribution and mass fraction distributions,
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Figure 3. The coordinate system and asymptotic regions.

and the speed of the reaction front. We then describe the basic structure of the
asymptotic solution, and some of the boundary value problems that we need to solve,
in § 3. We take two different approaches: in § 4 we briefly discuss the case of small
heat production, and hence constant density at leading order, whilst in § 5 we present
results for the variable-density model, which has a slightly more involved asymptotic
structure. We then compare our theory with some preliminary experiments, and draw
some conclusions.

2. The mathematical model
In the following analysis we use a cylindrical polar coordinate system, (r, θ, z), with

the origin at the centre of the outlet of the tube, as shown in figure 3. Although we
formulate the governing equations for an unsteady flow, in due course we shall look
for a steady, permanent-form travelling wave solution (a flame solution).

2.1. The governing equations and boundary conditions

The equations for conservation of mass, momentum and energy are derived using
continuum theory for a mixture of reacting species (Buckmaster & Ludford 1982).
From these equations we wish to obtain an asymptotic solution that will provide us
with some insight into the structure of the flow, so we must make some simplifying
assumptions. We first consider simplifying the chemistry of the problem. The reaction
of methane with oxygen is complex (Senkan 1992) and we simplify the system so that
the reaction is essentially

fuel → products.

This model is widely used for premixed flames (Buckmaster & Ludford 1982). Since
mass, m, is conserved, mf =mp , where the subscripts f and p denote properties of
the fuel and product respectively. Also, since the sum of the mass fractions, Yi , is
always unity, we have Yp =1 − Yf and hence we only have to solve for the fuel mass
fraction which satisfies

ρ

(
∂Yf

∂t
+ u

∂Yf

∂r
+ w

∂Yf

∂z

)
=

1

r

∂

∂r

(
rρD

∂Yf

∂r

)
+

∂

∂z

(
ρD

∂Yf

∂z

)
, (2.1)

where ρ is the total density of the fluid mixture, D is the molecular diffusivity of the
gases in the mixture (which we assume to be the same for both species) and u and
w are the radial and axial velocities. This simplification also affects the equation of
state, which becomes

p =
RρT

mf

,

where R is the molar gas constant and p and T are the total pressure and temperature
of the fluid mixture. Since the temperature of the mixture is low enough that there is



The propagation of a surface-catalysed flame in a tube 367

no significant chemical reaction in the bulk, there is no creation of mass, momentum
or energy there and the mixture of gases behaves as a continuous fluid. The chemical
reaction is confined to the inner surface of the tube, where a platinum catalyst is
present, and will therefore appear as a boundary condition.

At the boundary between the surface of the tube and the rest of the gas, r = a, there
is an influx of fuel into the boundary, balanced by an efflux of products produced by
the chemical reaction. Surface-catalysed reactions are complex, multi-step processes
(see, for example, Wei & Iglesia 2004), each part of which is likely to have Arrhenius
temperature-dependence. Since we have already made a huge simplification of the
chemistry by just considering fuel and products, we choose the simplest possible
temperature dependence for the reaction, namely that there is no reaction for T < Tc,
and a constant reaction rate for T � Tc, where Tc is a constant critical temperature.
Although the correspondence is not precise, this gives a reaction rate qualitatively
similar to an Arrhenius reaction rate e−Ta/T . We hope to explore the effect of this
more realistic temperature dependence in future publications. Using the law of mass
action, we now have

ρD
∂Yf

∂r
=

{
−k0ρYf , T � Tc

0, T < Tc

at r = a,

where k0 is the constant rate of the catalysed reaction.
At the inner surface of the tube we also have continuity of velocity normal to the

surface, u =0 since gases cannot penetrate the tube wall, and the no-slip condition
at the solid boundary, w = 0. To obtain the heat-flux boundary condition, we assume
that the radial temperature gradient across the tube is small, since the zirconia is
thin compared to the radius of the tube. We can therefore combine the boundary
conditions at the inner and outer surfaces to obtain

k
∂T

∂r
=

{
k0ρYf Qc, T � Tc

0, T < Tc

at r = a,

where k is the thermal conductivity of the mixture and Qc is the heat of combustion
of methane. The heat losses due to radiation and natural convection are small in
comparison to the magnitude of the heat flux through the tube; the non-dimensional
radiation heat transfer coefficient is A = O(10−2), and the Nusselt number is Nu =
O(10−1) (see tables 1 and 2). We have therefore neglected them here, although their
effect on the solution as a small perturbation over a long distance remains to be
investigated. In particular, the appearance of the reaction front as a red band rather
than an extended red hot region must be due to cooling by heat losses. We assume
that this affects the appearance, but not the leading-order behaviour of the flame.

The length of the tube is much greater than its radius, so we treat it as semi-infinite
to leading order. The temperature, mass fraction and mass flow rate at the inlet
therefore satisfy

T → Tin, Yf → 1, 2π

∫ a

0

ρwr dr → qin as z → −∞, (2.2)

where qin is the inlet mass flow rate and Tin the inlet temperature.

2.2. Non-dimensionalization

In what follows, dimensional variables are denoted by a star. We non-dimensionalize
the governing equations using characteristic scales of the system. As there is now no
geometrical length scale in the axial direction, we use the diffusion length scale. The
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Physical quantity Symbol Value/magnitude

Inner radius of tube a 10−3 m
Width of tube h = b − a 2 × 10−4 m
Mass flow rate at inlet qin 1 × 10−6 kg s−1

Inlet (room) temperature Tin 293 K
Critical temperature of reaction Tc O(103) K
Density at the inlet (T = Tin) ρin O(1) kgm−3

Molecular diffusivity at inlet Din O(10−6) m2 s−1

Viscosity of gas mixture at inlet µin O(10−5) kgm−1 s−1

Thermal conductivity of gas mixture at inlet kin O(10−2) Wm−1 K−1

Specific heat at constant pressure of gas mixture cp O(103) J kg−1 K−1

Specific heat at constant volume of gas mixture cv O(103) J kg−1 K−1

Stefan–Bolzman constant σ 5.67 × 10−8 Wm−2 K−4

Emissivity of zirconia tube ε O(10−1)
Surface heat transfer coefficient H O(1) Wm−2 K−5/4

Heat of combustion of methane Qc 5.570 × 107 J kg−1

Rate of reaction k0 O(10−2) m s−1

Table 1. Parameters, their values and their meanings.

dimensionless variables are

r =
r∗

a
, z =

z∗

qa
, u =

qu∗

W
, w =

w∗

W
, t =

Wt∗

qa
, T =

T ∗

Tin

,

k =
k∗

kin

, D =
D∗

Din

, µ =
µ∗

µin

, p =
p∗ − pin

ρinW 2
, ρ =

ρ∗

ρin

,

where qa is the diffusion length scale and

q =
Wa

Din

.

The parameters Din, µin, kin and ρin are the diffusivity, viscosity, thermal conductivity
and density of the mixture of fluids at the inlet temperature, Tin. The axial velocity
scale, W , is given by

W =
qin

πa2ρin

.

In terms of these variables, the dimensionless governing equations are

∂ρ

∂t
+

1

r

∂

∂r
(rρu) +

∂

∂z
(ρw) = 0, (2.3a)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= −q2 1

ρ

∂p

∂r
+

q

Re

1

3ρ

[
4

∂

∂r

(
µ

∂u

∂r

)
+ 4

µ

r

∂u

∂r
− 4uµ

r2

+ 3
∂

∂z

(
µ

∂w

∂r

)
− 2

∂

∂r

(
µ

∂w

∂z

)
− 2

u

r

∂µ

∂r

]
+

1

Re q

1

ρ

∂

∂z

(
µ

∂u

∂z

)
, (2.3b)

∂w

∂t
+u

∂w

∂r
+w

∂w

∂z
= − 1

ρ

∂p

∂z
+

1

Re q

1

3ρ

[
1

r
µ

∂u

∂z
+ 3

∂

∂r

(
µ

∂u

∂z

)
− 2

∂

∂z

(
µ

∂u

∂r

)

+ 4
∂

∂z

(
µ

∂w

∂z

)
− 2u

1

r

∂µ

∂z

]
+

q

Re

1

ρ

1

r

∂

∂r

(
rµ

∂w

∂r

)
, (2.3c)

ρ

(
∂Yf

∂t
+ u

∂Yf

∂r
+ w

∂Yf

∂z

)
=

1

r

∂

∂r

(
rρD

∂Yf

∂r

)
+

1

q2

∂

∂z

(
ρD

∂Yf

∂z

)
, (2.3d)
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Symbol Definition Typical value Description

q
qin

πaρinDin

O(102)
rate of fuel flow

rate of diffusion

Re
qin

πaµin

O(102)
inertial forces

viscous forces

Pr
µincp

kin

O(1)
momentum diffusivity

thermal diffusivity

L kin

ρinDincp

O(1)
thermal diffusivity

mass diffusivity

γ
cp

cv

O(1)
specific heat at constant pressure

specific heat at constant volume

M
qin

πa2ρin

√
(γ − 1) cpTin

O(10−3)
average speed in fluid

average speed of sound in fluid

Q
Qc

cpTin

O(10)
heat produced in reaction

heat transferred by conduction

Da
k0 a

Din

O(10)
rate of reaction

rate of diffusion

ε
h

a
O(10−1)

thickness of tube

radius of tube

A
σεT 3

ina

kin

O(10−2)
rate of heat transfer by radiation

rate of heat transfer by conduction

Nu
HaT

1/4
in

kin

O(10−1)
rate of heat transfer by convection

rate of heat transfer by conduction

Table 2. The dimensionless parameters.

ρ

(
∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z

)
= L1

r

∂

∂r

(
rk

∂T

∂r

)
+

L
q2

∂

∂z

(
k
∂T

∂z

)
, (2.3e)

ρT = 1, (2.3f)

where Re and L are the Reynolds number and Lewis number respectively, defined
by

Re =
Waρin

µin

, L =
kin

ρinDincp

.

Since the Mach number, M , satisfies M2 � 1 (see table 2), we have set M =0 in all
our calculations. Defining the Prandtl number by Pr= µincp/kin we can write q in
terms of the Reynolds, Prandtl and Lewis numbers as

q = Re Pr L. (2.4)

Since both Pr and L are O(1) parameters, q = O(Re), with Re � 1. We can therefore
think of q as a measure of the mass flow rate.

2.2.1. Boundary conditions

In terms of the dimensionless variables, the boundary conditions at r = 1 are

u = 0, w = 0,



370 F. Adamson, J. Billingham, A. C. King and K. Kendall

ρD
∂Yf

∂r
=

{
−DaρYf , T > Tc,

0, T < Tc,
k
∂T

∂r
=

{
QDaρYf /L, T > Tc,

0, T < Tc,

where Tc is now the dimensionless critical temperature of the reaction, Da is the
Damköhler number and Q is the dimensionless heat of reaction

Da =
k0a

Din

, Q =
Qc

cpTin

.

At r = 0, u, w, Yf and T must be finite, and

u → 0,

∫ 1

0

rρw dr → 1

2
, Yf → 1, T → 1,

as z → − ∞.

2.3. Further simplifications

A commonly used and reasonable approximation is that the fuel and temperature dif-
fuse at the same rate, and hence that the Lewis number is unity, L = 1 (Buckmaster &
Ludford 1982). From this we further assume that the temperature dependences of the
thermal conductivity and diffusion coefficient are such that k = ρD. This allows us
to add Q times (2.3d) to (2.3e) giving an equation for QYf + T . From the boundary
conditions we have

∂

∂r
(QYf + T ) = 0 at r = 1, QYf + T → Q + 1 as z → −∞,

so QYf + T = Q + 1 is a solution. We therefore only have to explicitly solve for one
of either temperature or mass fraction. We choose to solve for temperature.

3. The structure of the asymptotic solution
We now seek an asymptotic structure based on the limit of large q and Da.

Physically, this corresponds to a rapid throughput of fuel and fast chemical reaction
at the inner surface of the tube. We look for a travelling wave solution, which we
expect will develop as the large-time solution. We transform the equations into a
frame of reference moving with the flame front at a constant speed, c, which we will
have to determine. Experimentally this wave speed is much less than the flow speed
and its magnitude will be determined theoretically by the scalings in the asymptotic
regions, as we will show in § 3.1. Writing z′ = z + ct and substituting into (2.3), we
obtain

1

r

∂

∂r
(rρu) +

∂

∂z′ (ρw′) = 0, (3.1a)

u
∂u

∂r
+ w′ ∂u

∂z′ = −q2 1

ρ

∂p

∂r
+

q

Re

1

3ρ

[
4

∂

∂r

(
µ

∂u

∂r

)
+ 4

µ

r

∂u

∂r
− 4uµ

r2

+ 3
∂

∂z′

(
µ

∂w′

∂r

)
− 2

∂

∂r

(
µ

∂w′

∂z′

)
− 2

u

r

∂µ

∂r

]
+

1

Re q

1

ρ

∂

∂z′

(
µ

∂u

∂z′

)
, (3.1b)

u
∂w′

∂r
+ w′ ∂w′

∂z′ = − 1

ρ

∂p

∂z′ +
1

Re q

1

3ρ

[
1

r
µ

∂u

∂z′ + 3
∂

∂r

(
µ

∂u

∂z′

)
− 2

∂

∂z′

(
µ

∂u

∂r

)

+ 4
∂

∂z′

(
µ

∂w′

∂z′

)
− 2u

1

r

∂µ

∂z′

]
+

q

Re

1

ρ

1

r

∂

∂r

(
rµ

∂w′

∂r

)
, (3.1c)
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Figure 4. Sketch of the tube showing the asymptotic regions.

ρ

(
u

∂T

∂r
+ w′ ∂T

∂z′

)
=

1

r

∂

∂r

(
rk

∂T

∂r

)
+

1

q2

∂

∂z′

(
k
∂T

∂z′

)
, (3.1d)

ρT = 1, (3.1e)

where w′ = w + c is the axial velocity in the new frame of reference. The boundary
conditions in this frame of reference become

u = 0, w′ = c,

k
∂T

∂r
=

{
Daρ (Q + 1 − T ) , z′ > 0

0, z′ < 0
at r = 1. (3.2)

At r = 0 we require that u, w′ and T are finite, and as z′ → −∞ we match the flow in
the reaction region to the steady inlet flow.

Since we are looking for a travelling wave solution, which is translationally
invariant, we fix the origin, the position where the chemical reaction begins, by assum-
ing that T = Tc at z′ =0, r = 1. In subsequent calculations, this means that we will
prescribe the wave speed and look for a solution. The corresponding critical tempera-
ture, Tc, is then the temperature at z′ = 0, r = 1.

The Damköhler number is large, so changes in the flow due to the reaction occur in
a small region close to the reaction front at z′ =0, r = 1. This region is the innermost
of our asymptotic structure and is shown as region IV in figure 4. The outer regions, I
and II, give the O(1) flow in the tube for z′ < 0 and z′ > 0 respectively. In z′ < 0, no
chemical reaction occurs and the flow at leading order is just the steady inlet flow. In
z′ > 0, changes in the flow due to chemical reaction at r = 1 diffuse out into the centre
of the tube. The solution in region III matches together the solutions in regions II
and IV.

In regions I and II, the leading-order equations are the large q and Da limits of (3.1)
and (3.2). From (2.4) we have q = Pr Re, since L = 1. Substituting this into (3.1) and
taking the limit of large q we have

1

r

∂

∂r
(rρu) +

∂

∂z′ (ρw′) = 0, (3.3a)

∂p

∂r
= 0, (3.3b)
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u
∂w′

∂r
+ w′ ∂w′

∂z′ = − 1

ρ

∂p

∂z′ + Pr
1

ρ

1

r

∂

∂r

(
rµ

∂w′

∂r

)
, (3.3c)

ρ

(
u

∂T

∂r
+ w′ ∂T

∂z′

)
=

1

r

∂

∂r

(
rk

∂T

∂r

)
, (3.3d)

ρT = 1, (3.3e)

at leading order. Taking Da → ∞ in the heat-flux boundary condition at r = 1, (3.2),
we have simply ∂T /∂r = 0 for z′ < 0 and T = 1 + Q for z′ > 0. The equations to be
solved in the inner two regions can be found by rescaling (3.1).

We construct a region around the edge of the reaction front in which changes in
the heat flux due to the reaction are of O(1). The radial scale is therefore determined
by considering the heat-flux boundary condition at the wall, (3.2). Writing r2 = 1−ηR̄

and substituting into (3.2), we have a balance of leading-order terms when η = Da−1.
Before we can determine the axial scaling of the inner region we need to know the
magnitude of the wave speed. We can determine this by considering the solution in
the inlet region and how it matches to the inner region.

3.1. Solution in the inlet region, Region I

No chemical reaction takes place in region I, and the inlet conditions show that T =1,
ρ = 1, µ = 1 and k = 1. The inlet flow is Poiseuille, with u =0 and w′ = 2(1 − r2) + c.
From experiments we know that the wave speed is much less than the flow speed, so
we write c = ξC where ξ � 1 and C = O(1) which gives

w′ = 2(1 − r2) + ξC.

To obtain the richest balance of terms in the governing equations, we rescale the axial
velocity so that it appears at leading order in the innermost asymptotic region. Let
W̄ be the axial velocity in the inner region so that w′ = ξ (W̄ + C). In terms of the
region IV scaled variable R̄, we obtain

W̄ = 2ξ−1Da−1R̄,

so the richest balance occurs when ξ =Da−1. This allows us to determine the equations
in region IV.

3.2. Equations in region IV

We write r2 = 1 − Da−1R̄, z′ =Da−3Z̄, w′ = Da−1(W̄ + C) and substitute into (3.1). At
leading order we obtain

∂

∂R̄
(ρŪ ) +

∂

∂Z̄
(ρ(W̄ + C)) = 0, (3.4a)

1

2
Ū

∂Ū

∂R̄
+

1

2
(W̄ + C)

∂Ū

∂Z̄
= −q̄2 2

ρ

∂P̄

∂R̄
+

Pr

3ρ

[
8

∂

∂R̄

(
µ

∂Ū

∂R̄

)
+ 6

∂

∂Z̄

(
µ

∂W̄

∂R̄

)

− 4
∂

∂R̄

(
µ

∂W̄

∂Z̄

)]
+

Pr

q̄2

1

2ρ

∂

∂Z̄

(
µ

∂Ū

∂Z̄

)
, (3.4b)

Ū
∂W̄

∂R̄
+ (W̄ + C)

∂W̄

∂Z̄
= − 1

ρ

∂P̄

∂Z̄
+

1

q̄2

Pr

3ρ

[
3

∂

∂R̄

(
µ

∂Ū

∂Z̄

)
− 2

∂

∂Z̄

(
µ

∂Ū

∂R̄

)

+4
∂

∂Z̄

(
µ

∂W̄

∂Z̄

)]
+

4Pr

ρ

∂

∂R̄

(
µ

∂W̄

∂R̄

)
, (3.4c)
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ρŪ
∂T

∂R̄
+ ρ

(
W̄ + C

)
∂T

∂Z̄
= 4

∂

∂R̄

(
k
∂T

∂R̄

)
+

1

q̄2

∂

∂Z̄

(
k
∂T

∂Z̄

)
, (3.4d)

ρT = 1, (3.4e)

where Ū = −2Da−1u. The rescaled pressure, P̄ , is given by p = Da−2P̄ , where p is the
pressure in the outer regions. The parameter q̄ is given by q̄ = qDa−2, and we assume
that q̄ =O(1).

The boundary conditions in region IV are

Ū = 0, W̄ = 0, k
∂T

∂R̄
=

{ 1
2
ρ (T − 1 − Q), Z̄ > 0

0, Z̄ < 0
at R̄ = 0, (3.5a)

Ū → 0, W̄ ∼ 2R̄, T → 1 as Z̄ → −∞, (3.5b)

along with matching to the outer solution as R̄, Z̄ → ∞. We can now determine the
scalings for the intermediate region, III.

3.3. Equations in region III

Region III is situated between regions II and IV as shown in figure 4. We rescale using
r2 = 1 − Da−1/2R, z′ = Da−3/2Z and w′ = Da−1/2W + Da−1C. Substituting into (3.1), we
find the leading-order equations to be

∂

∂R
(ρU ) +

∂

∂Z
(ρW ) = 0, (3.6a)

∂P

∂R
= 0, (3.6b)

U
∂W

∂R
+ W

∂W

∂Z
= − 1

ρ

∂P

∂Z
+

4Pr

ρ

∂

∂R

(
µ

∂W

∂R

)
, (3.6c)

ρU
∂T

∂R
+ ρW

∂T

∂Z
= 4

∂

∂R

(
k
∂T

∂R

)
, (3.6d)

ρT = 1. (3.6e)

The rescaled pressure, P , is given by p = Da−1P and the radial velocity is U =
−2Da−1/2u. The boundary conditions at the wall are

U = 0, W = 0, T = 1 + Q at R = 0, (3.7)

along with matching to the outer regions as Z → 0 and R → ∞.
We are now in a position to solve the systems of equations we have obtained in each

of the asymptotic regions. We have already described the simple solution in region I,
the inlet region, in § 3.1. We will consider the solution in the three other regions
for two different cases. The more complicated of the two is the O(1) heat release
problem, which is given by the variable-density equations. We first briefly consider the
case of small heat release, which is significantly more straightforward to tackle than
the full problem.

4. Solution for small heat release
The complexity of the systems to be solved in regions II, III and IV can be reduced

by assuming that the heat of reaction, Q, is small. This approximation is not very
realistic physically, but it simplifies the equations greatly and can be used as a check
on the accuracy of our solutions when Q =O(1) in the limit Q → 0. Moreover, the
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solution for Q � 1 retains most of the features and physics of the full problem. When
Q � 1, the temperature remains close to its inlet value, so it is appropriate to define
T = 1 + QT̂ . It follows from the equation of state that, to leading order, the density
is also constant (the constant-density approximation) and, since the viscosity and
thermal conductivity are dependent only on the temperature, we have µ = 1 and k = 1
at leading order. Using the constant-density approximation, we therefore find that the
flow down the tube is unchanged, with u = 0 and w′ =2(1 − r2) + Da−1C at leading
order. The energy equation is now the only non-trivial equation to be solved. In each
of the asymptotic regions, the leading-order equation can be found by substituting
u =0, w′ = 2(1 − r2) + Da−1C, T = 1 + QT̂ , k =1 and ρ =1 into (3.3d), (3.4d) and
(3.6d) and their respective boundary conditions.

We do not go into details of the solution here, the full analysis is given in Adamson
(2004); however, we present the main results to facilitate a comparison with the
variable-density model.

4.1. Variation of wave speed with critical temperature

The equations in region IV were solved numerically using a finite difference scheme.
The program is set up in such a way that C and q̄ are input and the temperature
is then found; in particular, the corresponding value of Tc is the temperature at
z′ = 0, r = 1. Temperature profiles for different values of the wave speed, C, and hence
of the critical temperature, Tc, for q̄ =1, are shown in figure 5. Comparing these
solutions we find that for small C the temperature increases more rapidly than for
large C so that, at a given point, the temperature is greater when the wave speed is
smaller. We obtained results at several wave speeds and for each value of C noted
the temperature at R̄ = 0, Z̄ = 0, which is the critical temperature, T̂ c, to which the
solution corresponds. A plot, showing that the wave speed decreases with critical
temperature, is shown in figure 6.

4.2. Variation of wave speed with mass flow rate

Taking a fixed value of critical temperature we varied q̄ to determine the effect on
the wave speed. The results for T̂ c = 0.2 are shown in figure 7. Increasing the mass
flow rate causes the wave speed to decrease, and reach zero at q̄ ≈ 2.48. For q̄ > 2.48
the wave speed is negative so that, instead of propagating towards the inlet of the
tube, the wave front moves towards the outlet and will eventually be blown out.

The solution for small Q shows that the flame speed depends on both the mass
flow rate of fuel into the tube and the critical temperature at which the reaction
starts, T̂ c. The latter is related to the amount of catalyst present on the inner surface
of the tube; the more catalyst present the lower T̂ c will be. These effects could both
be tested experimentally. We make a comparison with experiment in § 6, but first we
tackle the problem when Q =O(1).

5. Solution for O(1) heat release
When Q =O(1), the solution in the inlet region, which we discussed in § 3.1, remains

unchanged. In the other three regions, however, we must solve the more complicated
system of variable-density equations.

5.1. Region II

In this region we solve (3.3) subject to the boundary conditions

u = 0, w′ = 0, T = 1 + Q at r = 1, (5.1a)

u = 0, w′ = 2(1 − r2), T = 1 at z′ = 0. (5.1b)
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Figure 6. Plot of wave speed, C, against critical temperature, T̂ c .

We also require that u, w′ and T are finite at r = 0. We assume that the fluid
behaves like the model fluid described by Stewartson (1964), so that the Prandtl
number, Pr= 1, and the viscosity and thermal conductivity are directly proportional



376 F. Adamson, J. Billingham, A. C. King and K. Kendall

0 1 2 3 4 5
–5

0

5

10

15

20

25

q

C

Figure 7. Plot of wave speed, C, against mass flow rate of fuel, q̄ .

to temperature, µ = T , k = T . In terms of the streamfunction, ψ , defined by

∂ψ

∂z′ = rρu,
∂ψ

∂r
= −rρw′,

so that conservation of mass, (3.3a), is satisfied, (3.3c, d) become

− 3
T

r4

∂ψ

∂z′
∂ψ

∂r
− T

r3

∂ψ

∂r

∂2ψ

∂r∂z′ +
3

r3

∂T

∂r

∂ψ

∂z′
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+ 3
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+
T
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∂r
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(
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∂r2
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∂r3

∂ψ

∂r
− 4
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, (5.2a)

∂ψ

∂z′
∂T

∂r
− ∂ψ

∂r

∂T

∂z′ = T
∂T

∂r
+ r

(
∂T

∂r

)2

+ rT
∂2T

∂r2
, (5.2b)

where we have used the fact that ∂p/∂r = 0 to remove the pressure terms. The
boundary conditions for ψ and T are

ψ = −1

2
,

∂ψ

∂r
= 0, T = 1 + Q at r = 1, (5.3a)

ψ = −
(

r2 − r4

2

)
,

∂ψ

∂z′ = 0, T = 1 at z′ = 0. (5.3b)

As u and w′ must be finite at r = 0 we require that

ψ = 0,
∂ψ

∂r
= 0,
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Figure 8. Solutions in region II. (a) Temperature, (b) radial velocity, (c) axial velocity.

and also impose the symmetry condition

∂T

∂r
= 0 at r = 0.

Using a forward-stepping implicit finite difference scheme, we discretize the equations
on an m × n grid and write the problem in the form

Aj T j = Bj T j−1, (5.4a)

Cjψ j = Djψ j−1, (5.4b)

where Aj , Bj , Cj and Dj are known m × m matrices, T j and ψ j are vectors of length
m that contain the discretized temperature and streamfunction, and 0 � j � n. Writing
T j = T g + �T and ψ j = ψg , where T g and ψg are approximations to the solutions
T j and ψ j , and �T is a small correction to the temperature, we obtain an equation
for �T of the form

Mj�T = rj , (5.5)

where Mj is another known m × m matrix, and rj is a known vector of length m.
Both Mj and rj contain the approximate solutions T g and ψg . In a similar manner
we obtain an equation for �ψ . We solve this system for �T and �ψ in turn and
use an iterative procedure to improve the approximations for T g and ψg until both
�T and �ψ have converged to zero. Some typical solutions are shown in figure 8.
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Figure 9. Sketch of the tube showing the additional asymptotic regions.

The qualitative form of the solutions is as we might expect, with the temperature
decreasing with distance from the wall and increasing as the distance from the edge
of the reaction front, z′, increases. The axial velocity increases most quickly close to
the wall of the tube where the temperature is highest. As z′ becomes large the velocity
field tends to a steady Poiseuille profile again, but the maximum velocity here is larger
than it was in the inlet region, because of the expansion of the heated gas. The radial
velocity increases quickly at small z′ as the heated fluid moves away from the wall.
In fact, the solution for u jumps from zero at z′ = 0 to a large negative value at the
first calculated value of z′. The magnitude of this jump increases as the step size in z′

is decreased so that as z′ → 0 there appears to be a singularity in the radial velocity
solution. There are no physical singularities in our problem, which suggests that
as z′ → 0 the solution in region II becomes non-uniform. Our asymptotic structure
should include another region which smooths out the solution for small z′. Figure 9
shows the new asymptotic structure where extra regions, IIa and IIIa, have been
added around the reaction front. Region III is drawn as a boundary layer to show
more easily how the regions match together. Regions IIa and IIIa match the solutions
of regions I and II when r = O(1) and r = O(Da−1/2) respectively. We describe the
solution in these two new regions in the Appendix.

5.2. Region III

In this region, we solve (3.6) subject to the boundary conditions

U = 0, W = 0, T = 1 + Q at R = 0, (5.6a)

U, W, T ∼ Region IIIa solution as R → ∞, Z → 0. (5.6b)

When written in terms of the region III variables, the region IIIa solutions are, to
leading order,

T = 1 + Da−γ exp

(
− R3

18Z

)
,

Ψ = R2 + 2Da−γ −1 exp

(
− R3

18Z

)
,

where Ψ = Da(2ψ + 1 + Da−1C) and γ is a constant, which can be determined by
higher-order matching. The streamfunction, Ψ , is related to the velocities, U and W ,
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by

∂Ψ

∂R
= ρW,

∂Ψ

∂Z
= −ρU,

so conservation of mass, (3.6a), is satisfied. We look for a similarity solution of the
form

T = T (η), Ψ = (3Z)2/3f (η), where η =
R

(3Z)1/3
.

After removing the pressure terms from the momentum equations, by differentiating
(3.6c) with respect to R, we obtain the governing equations in terms of T and f as

−2f
df

dη

d2T

dη2
− 4f

d2f

dη2

dT

dη
− 2f

d3f

dη3
T −

(
df

dη

)2
dT

dη
= 12

dT

dη

d2T

dη2

df

dη

+16

(
dT

dη

)2
d2f

dη2
+ 4T

d3T

dη3

df

dη
+ 16T

d2T

dη2

d2f

dη2
+ 20T

dT

dη

d3f

dη3
+ 4T 2 d4f

dη4
, (5.7a)

4

(
dT

dη

)2

+ 4T
d2T

dη2
+ 2f

dT

dη
= 0. (5.7b)

The boundary conditions at the wall, η = 0, are

f = 0,
df

dη
= 0, T = 1 + Q, (5.8)

and as η → ∞ we have

T ∼ 1 + Da−γ exp

(
−η3

6

)
, (5.9a)

f ∼ η2 +
1

(3Z)2/3
2Da−γ −1 exp

(
−η3

6

)
. (5.9b)

Although it appears that the boundary condition in (5.9b) is not in similarity form,
we can assume that the term in Z in front of the exponential is part of the next-order
solution in region IIIa, and therefore that

f ∼ η2 + 2Da−γ −1 exp

(
−η3

6

)
, (5.10)

to leading order. Differentiating (5.9a) and (5.10) and eliminating the exponential
terms gives the boundary conditions

df

dη
+

η2

2
f ∼ 2η +

η4

2

d2f

dη2
+

η2

2

df

dη
+ ηf ∼ 2 + 2η3

dT

dη
+

η2

2
T ∼ η2

2




as η → ∞.

We solved (5.7) numerically using a finite difference scheme and the solutions, when
Q =1, are shown in figure 10.
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Figure 10. Solutions in region III. (a) Temperature, (b) streamfunction.

5.3. Region IV

The equations to be solved in this region are (3.4) with the boundary conditions,
(3.5). Differentiating (3.4b) and (3.4c) with respect to Z̄ and R̄ respectively, we then
combine them so as to remove the pressure terms. We define the streamfunction, ψ̄ ,
using

∂ψ̄

∂Z̄
= −ρŪ,

∂ψ̄

∂R̄
= ρ(W̄ + C),

and, setting µ = T , k = T as before, we substitute ψ̄ and T for u, w′, µ, k and ρ into
the momentum and energy equations giving
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)
, (5.11a)

and

−∂ψ̄

∂Z̄

∂T

∂R̄
+

∂ψ̄

∂R̄

∂T

∂Z̄
= 4

(
∂T

∂R̄

)2

+ 4T
∂2T

∂R̄2
+

1

q̄2

(
∂T

∂Z̄

)2

+
1

q̄2
T

∂2T

∂Z̄2
. (5.11b)
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The boundary conditions become

ψ̄ = 0,
∂ψ̄

∂R̄
=

C

T
, T 2 ∂T

∂R̄
=

{
1
2
(T − 1 − Q) , Z̄ > 0,

0, Z̄ < 0,
at R̄ = 0, (5.12a)

ψ̄,
∂ψ̄

∂R̄
, T → Region IIIa solution as R̄ → ∞, (5.12b)

∂ψ̄

∂Z̄
→ 0, ψ̄ ∼ CR̄ + R̄2, T → 1 as Z̄ → −∞, (5.12c)

ψ̄,
∂ψ̄

∂Z̄
, T → Region III solution as Z̄ → ∞. (5.12d)

Since we wish to solve this system numerically, we must smooth the discontinuous
boundary condition at R̄ = 0 to reduce errors close to Z̄ = 0. We replace the Heaviside
function with a hyperbolic tangent giving

T 2 ∂T

∂R̄
=

1

2
(T − 1 − Q)

1

2
[1 + tanh(δ−1Z̄)] at R̄ = 0,

where δ is a small parameter of the order of the step size in Z̄. We return to the
solutions found in regions IIIa and III to obtain boundary conditions as R̄ → ∞ and
Z̄ → ∞ respectively.

5.3.1. Boundary conditions as R̄ → ∞
The region IIIa solutions are

T = 1 + Da−γ exp(−Da φ),

ψ = −1

2
− Da−1 C

2
+ Da−3/2 CR∗

2
+ Da−1 R∗2

2
+ Da−γ −2 exp(−Da φ),

where φ is given by (A 8) and t is a root of (A 7). In terms of the region IV variables
R∗ = Da−1/2R̄ and Z∗ = Da−1/2Z̄, and t ≡ t(R∗/Z∗) therefore remains of O(1) when
written in terms of R̄, Z̄. It follows that φ = O(Da−1) and the region IIIa solutions
written in terms of the region IV variables are

T = 1 + Da−γ exp(−φ̄),

ψ̄ = CR̄ + R̄2 + 2Da−γ exp(−φ̄),

to leading order, where φ̄ =Da φ and ψ̄ = Da2(2ψ + 1 + Da−1C). Differentiating these
expressions and eliminating exponential terms we obtain

∂T

∂R̄
+

∂φ̄

∂R̄
T ∼ ∂φ̄

∂R̄
,

∂ψ̄

∂R̄
+

∂φ̄

∂R̄
ψ̄ ∼ C + 2R̄ + (CR̄ + R̄2)

∂φ̄

∂R̄
,

∂2ψ̄

∂R̄2
+

∂φ̄

∂R̄

∂ψ̄

∂R̄
+

∂2φ̄

∂R̄2
ψ̄ ∼ 2 + (C + 2R̄)

∂φ̄

∂R̄
+ (CR̄ + R̄2)

∂2φ̄

∂R̄2
,

which are the boundary conditions for T and ψ̄ as R̄ → ∞.

5.3.2. Boundary conditions as Z̄ → ∞
The region IV solutions must match to the region III solutions as Z̄ → ∞. In

region III, we obtained solutions in terms of a similarity variable η, and in terms of
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the region IV variables, R̄ and Z̄, the region III solutions are given by

T = T (η), ψ̄ = (3Z̄)2/3f (η), where η =
R̄

(3Z̄)1/3
.

We require a boundary condition as Z̄ → ∞, so we only need to know the structure
of the solution in region III as η → 0. We let

T = 1 + Q + T̂ , f = f̂ ,

where T̂ , f̂ are small, and substitute into (5.7), which gives

d2T̂

dη2
= 0,

d4f̂

dη4
= 0,

at leading order. The solutions are

T̂ = A1η, f̂ = A2η
3 + B2η

2,

where we have satisfied the boundary conditions at η =0, given in (5.8). The constants
A1, A2 and B2 are unknown but can be eliminated from the solutions to give mixed
boundary conditions of the form

η
dT

dη
− T → −(1 + Q)

η2

6

d2f

dη2
− 2η

3

df

dη
+ f → 0

−η3 d3f

dη3
+ 4η2 d2f

dη2
− 10η

df

dη
+ 12f → 0




as η → 0.

When these are written in terms of ψ̄ , R̄ and Z̄ we obtain

3Z̄
∂T

∂Z̄
+ T → 1 + Q

3Z̄
∂2ψ̄

∂Z̄2
+ 4

∂ψ̄

∂Z̄
→ 0

3Z̄2 ∂3ψ̄

∂Z̄3
+ 10Z̄

∂2ψ̄

∂Z̄2
+ 4

∂ψ̄

∂Z̄
→ 0




as Z̄ → ∞.

These boundary conditions complete the system, which we solved using the numerical
scheme outlined below.

5.4. Numerical solution

The temperature is given by an array with components, Ti,j , representing the tempera-
ture at R̄i , Z̄j on a uniform grid of m × n points. Similarly, the streamfunction is
given by ψi,j . We truncate the semi-infinite range in R̄ and infinite range in Z̄ so that
0 � R̄j � 12 and −20 � Z̄j � 60. We calculate the derivatives of the discrete function
Ti,j using a five-point centred difference formula in the bulk and a four-point biassed
stencil formulae at the edges of the solution grid. In discrete form, (5.11) are given
by

Aj�ψ j+2 + Bj�ψ j+1 + Cj�ψ j + Dj�ψ j−1 + Ej�ψ j−2 = Rj , (5.13a)

aj�T j+2 + bj�T j+1 + cj�T j + dj�T j−1 + ej�T j−2 = rj , (5.13b)
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Figure 11. Region IV solutions for C = 1. (a) Temperature, (b) streamfunction,
(c) axial velocity, (d) radial velocity.

where Aj , aj , etc. are known m × m arrays, T j (=Ti,j ), ψ j ( = ψi,j ), Rj and rj are
vectors of length m and 0 � j � n. This system was solved using a Thomas algorithm
(Fletcher 1991).

We checked the mesh dependency of the numerical solution, and found the maxi-
mum relative errors between solutions on different grids to be of O(10−2). To minimize
these errors without increasing computational time too much we set dR̄ =0.1 and
dZ̄ = 0.1. We obtained results on this grid for a range of values of the wave speed, C,
heat of reaction, Q, and mass flow rate, q̄ . We began by holding Q and q̄ constant
and calculated the variation of critical temperature, Tc, with wave speed, C.

5.4.1. Variation of wave speed with critical temperature

We obtained results for a range of values of C. The results for C = 1 and C = 2 are
shown in figures 11 and 12 respectively. The temperature profiles are qualitatively
similar to those obtained in the constant-density model, see figure 5. At the point
where the reaction starts, Z̄ = 0, there is a displacement of the streamlines due to
the changing density and viscosity of the gas mixture. This causes a large increase
in the radial velocity around R̄ = 0, Z̄ =0 as the heated gas moves away from the
wall. This behaviour agrees with what we found in region II. The axial velocity also
changes rapidly around R̄ =0, Z̄ = 0 and increases as Z̄ increases. From the solutions
obtained at each value of the wave speed, C, we noted the critical temperature, Tc.
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Figure 12. Region IV solutions for C = 2. (a) Temperature, (b) streamfunction,
(c) axial velocity, (d) radial velocity.
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Figure 13. Plot of the wave speed, C, against critical temperature of reaction, Tc .

The variation of C with Tc is plotted in figure 13. The result is qualitatively similar to
that obtained in the constant-density model (see figure 6). A quantitative comparison
of the two models is made by looking at the variation of Tc with heat released from
the reaction, Q.
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Figure 14. Plot of the critical temperature, Tc , against heat released from the reaction, Q.
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Figure 15. Plot of wave speed, C, against mass flow rate of fuel, q̄ .

5.4.2. Variation of critical temperature with Q

Our results for Q sufficiently small must be consistent with the results we obtained
using the constant-density approximation, Q � 1, when the temperature was given
by T =1 + QT̂ . For C = 1, q̄ = 1 we found that the critical temperature is T̂ c = 0.21,
and it follows that for small Q the results of the variable-density model for Tc should
be given approximately by Tc = 1 + 0.21Q. Figure 14 shows that solutions of the
variable-density model are in very good agreement with the constant-density result
when Q is small, but that for larger values of Q the constant-density approximation
predicts too high a value for the critical temperature.

5.4.3. Variation of wave speed with mass flow rate

We now fix Q and Tc and vary the mass flow rate, q̄ , to see its effect on the wave
speed, C. The results for Q =1, Tc =1.2 are shown in figure 15. They are qualitatively
similar to the constant-density results shown in figure 7. The wave speed decreases as
q̄ increases and reaches zero when q̄ ≈ 1.51. For q̄ > 1.51 the wave speed is negative,
so for sufficiently large mass flow rates, the reaction front propagates towards the
outlet of the tube and will eventually be blown out.
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Percentage of platinum on surface of tube 0.12 0.19 0.29 0.32
Average wave speed (m s−1 × 10−4) 0.80 1.65 1.95 2.65

Table 3. Experimental data.

Mass flow rate (kg s−1 × 10−6) 1.09 1.63 2.18 2.72 3.27
Average wave speed (m s−1 × 10−4) 1.90 2.45 2.65 2.45 2.20

Table 4. Experimental data.

6. Qualitative comparison with preliminary experiment
At present, only very limited experimental data are available. However, we can

qualitatively compare the preliminary results obtained by Lefevre (2003) with our
model. The experiment described in § 1 was carried out several times using tubes of
zirconia coated on their inner surface with varying amounts of platinum catalyst. The
variation of the wave speed, c∗, with the amount of catalyst on the surface of the tube
was measured and the results are given in table 3. Two results linking the percentage
of platinum on the tube to the critical temperature were obtained experimentally, and
from these a linear relationship between the percentage platinum concentration, P ,
and critical temperature, T ∗, was obtained, namely

T ∗ = −500P + 948.

Experimentally, the heat released from the reaction is large and gives Q =O(10).
However, our models are not valid for large values of Q, due to the simplification
made in § 2.3. By comparing the Q =O(1) and constant-density results, we know that
as Q increases to O(1) values the constant-density model predicts too high a critical
temperature at constant wave speed, see figure 14. From this we infer that as Q

increases to O(10) values the O(1) model will tend to overestimate the critical tempera-
ture. Therefore, as the wave speed decreases with increasing critical temperature,
figure 13, we conclude that the values of wave speed at each Tc predicted by the
Q =O(1) model will be too high.

Indeed, the experimentally measured values of the wave speed are smaller than
those predicted by our model; however, the qualitative behaviour of the results is the
same: the wave speed decreases with increasing critical temperature.

Further experimental data relate the mass flow rate of fuel into the zirconia tube
to the wave speed, as shown in table 4. The experiments in this case were carried out
using a tube coated with 0.4% platinum catalyst. Experimentally, as the mass flow rate
increases the wave speed increases until qin reaches a value of about 2 × 10−6 kg s−1.
After this point, the wave speed decreases as the mass flow rate increases. Our
asymptotic solution is based on a large mass flow rate, so we only expect to obtain
agreement with experiment at sufficiently large values of qin. Although, the wave
speeds obtained from our model are again too large, the qualitative behaviour of the
solutions for qin > 2 × 10−6 is correct.

Furthermore, the numerical results show that for qin sufficiently large the wave
speed becomes negative. Although the available experimental data do not show this,
it has been reported that on increasing the mass flow rate sufficiently, the wave stops
propagating towards the inlet and the reaction front is blown out of the tube.

We note that the work by Lefevre (2003) is at a very early stage and that the results
need to be verified. Further work is also required to extend the experimental results
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to include a wider range of wave speeds, temperatures and mass flow rates, especially
at large values of qin.

7. Conclusion
We have shown that the reaction front, or surface-catalysed flame, that can pro-

pagate in a zirconia tube can be modelled as a steady travelling wave. We found that
the speed of this reaction front decreases as the temperature at which the reaction
starts, the critical temperature, Tc, increases, and as the mass flow rate of fuel
entering the tube, qin, increases. Having found a solution using the constant-density
approximation, we found that for larger values of the heat released by the reaction,
Q =O(1), the constant-density model predicts too high a value for the wave speed,
C. Also, as expected, the wave speeds predicted by our model were higher than
those given by the experimental data. There is, however, qualitative agreement with
experiment. At a critical value of the mass flow rate, q̄ = q̄c, the wave speed is zero
and, as q̄ increases past this critical value, C becomes negative. Hence, for q̄ > q̄c

the reaction front propagates towards the outlet of the tube and the reaction will
eventually be blown out. The experimental data available at present show an increase
in wave speed with mass flow rate, qin, for small qin and then a decrease as qin

increases past a value of about 2 × 10−6 kg s−1. Data at large values of the mass flow
rate have not been obtained, although it has been observed experimentally that for
large enough values of the mass flow rate the wave propagates towards the outlet of
the tube and the reaction is blown out.

There are several possible extensions and improvements to the work in this paper.
We hope to obtain better agreement between theory and experimental results by
solving for larger values of Q, which could be done by considering the asymptotic
solution for Q � 1. We could also consider some of the effects that we have currently
neglected, such as heat loss from the tube, more realistic chemistry and electro-
chemistry. In addition to any further mathematical analysis, a validation of the current
experimental results and more detailed experimental work is required. In particular,
further results showing the variation of wave speed with large mass flow rate are
needed to verify that the wave propagates backwards for sufficiently large qin.

Appendix. The additional asymptotic regions when Q =O(1)

A.1. Equations in region IIa

We return to the original equations, (3.1), to determine the scalings for this new region.
We remove the pressure terms from the momentum equations by differentiating (3.1b)
with respect to z′ and (3.1c) with respect to r and combining the resulting equations.
We rescale the axial coordinate using z′ = ζ z̃ with ζ � 1, and look for a WKB solution
of the form

T = 1 + εγ̃ exp

(
−ϕ(r, z̃)

ε

)
,

ψ = −
(

r2 − r4

2

)
− Da−1 Cr2

2
+ ε̃ δ̃ exp

(
− ϕ̃(r, z̃)

ε̃

)
,

where ε and ε̃ are small parameters and γ̃ and δ̃ are constants. The streamfunction,
ψ , is defined in exactly the same way as in region II. We substitute the expressions
for T and ψ into the momentum and energy equations. This gives the leading-order
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equations for ϕ and ϕ̃ as

− 2(1 − r2)
∂ϕ

∂z̃
=

(
∂ϕ

∂r

)2

+
1

q̄2

(
∂ϕ

∂z̃

)2

, (A 1a)

− 2(1 − r2)
∂ϕ̃

∂z̃

[(
∂ϕ̃

∂z̃

)2

+ q̄2

(
∂ϕ̃

∂r

)2]
exp

(
− ϕ̃

ε̃

)
− 4rq̄2(1 − r2)2

∂ϕ

∂z̃

∂ϕ

∂r
exp

(
− ϕ

ε

)

=

[
2

(
∂ϕ̃

∂r

)2(
∂ϕ̃

∂z̃

)2

+
1

q̄2

(
∂ϕ̃

∂z̃

)4

+ q̄2

(
∂ϕ̃

∂r

)4]
exp

(
− ϕ̃

ε̃

)

+ 2r(1 − r2)q̄2 ∂ϕ

∂r

[
1

q̄2

(
∂ϕ

∂z̃

)2

+

(
∂ϕ

∂r

)2]
exp

(
− ϕ

ε

)
, (A 1b)

where we have taken ε = ε̃ = ζ = Da−2 and δ̃ = γ̃ + 1. The viscosity and thermal
conductivity are µ = T and k = T , as they were in region II. Using (A 1a), we cancel
all the terms in ϕ in (A 1b), which then reduces to

−2(1 − r2)
∂ϕ̃

∂z̃
=

(
∂ϕ̃

∂r

)2

+
1

q̄2

(
∂ϕ̃

∂z̃

)2

,

and is of the same form as (A 1a). The boundary conditions on ϕ and ϕ̃ are identical,

exp
(

−ϕ

ε

)
→ 0 as z̃ → −∞ and r → 0,

so we have ϕ̃ = ϕ.
The solution in region IIa does not explicitly affect the solution in region IV,

since region IIa has no boundaries with region IV (see figure 9). The wave speed is
determined in region IV and the variation of C is the main result we wish to obtain
from our model. Because of this, and the complexity of the problem, we will not look
for a solution of (A 1a). However, in the correct asymptotic limits, the solution of
(A 1a) satisfies the appropriate boundary conditions. We will show that, as r → 1 and
z′ → 0, (A 1a) reduces to the equations in region IIIa, which we now derive.

A.2. Region IIIa

We again return to the original equations, (3.1), to determine the scalings for this
new region. We eliminate the pressure from the momentum equations as we did in
region IIa. We rescale using r2 = 1−ξR∗, z′ = ξ̃Z∗, with ξ , ξ̃ � 1, and look for a WKB
solution of the form

T = 1 + εγ exp

(
−φ(R∗, Z∗)

ε

)
,

ψ = −
(

r2 − r4

2

)
− Da−1 Cr2

2
+ ηδ exp

(
− φ̃(R∗, Z∗)

η

)
,

where ε and η are small parameters and γ and δ are constants. The streamfunction,
ψ , is defined in exactly the same way as in regions II and IIa. Substituting the
expressions for T and ψ into the momentum and energy equations, the leading-order
equations for φ and φ̃ are

− 2R∗ ∂φ

∂Z∗ = 4

(
∂φ

∂R∗

)2

+
1

q̄2

(
∂φ

∂Z∗

)2

, (A 2a)
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− 2R∗ ∂φ̃

∂Z∗

[(
∂φ̃

∂Z∗

)2

+ 4q̄2

(
∂φ̃

∂R∗

)2]
exp

(
− φ̃

η

)
+ 8R∗2

q̄2 ∂φ

∂Z∗
∂φ

∂R∗ exp

(
− φ

ε

)

=

[
8

(
∂φ̃

∂R∗

)2(
∂φ̃

∂Z∗

)2

+
1

q̄2

(
∂φ̃

∂Z∗

)4

+ 16q̄2

(
∂φ̃

∂R∗

)4]
exp

(
− φ̃

η

)

− 4R∗q̄2 ∂φ

∂R∗

[
1

q̄2

(
∂φ

∂Z∗

)2

+ 4

(
∂φ

∂R∗

)2]
exp

(
− φ

ε

)
, (A 2b)

where we have taken ε = η = ξ̃ ξ−3, q̄ = qξ̃ξ−1 and δ = γ + 2. We fixed the magnitudes
of these parameters by matching next-order terms in the energy equation. The richest
balance is obtained when ε = Da−1, ξ =Da−1/2 and ξ̃ = Da−5/2. All the terms in (A 2b)
containing φ cancel due to (A 2a), and (A 2b) reduces to

−2R∗ ∂φ̃

∂Z∗ = 4

(
∂φ̃

∂R∗

)2

+
1

q̄2

(
∂φ̃

∂Z∗

)2

,

which is of the same form as (A 2a). The boundary conditions on φ and φ̃ are
identical,

exp

(
−φ

ε

)
→ 0 as Z∗ → −∞ and R∗ → ∞, (A 3)

so we conclude that φ̃ = φ.

A.2.1. Matching regions IIa and IIIa

The equation for ϕ in region IIa, (A 1a), should reduce to (A 2a) as r → 1, z̃ → 0.
Substituting for R∗ and Z∗ into (A 1a), we obtain

−2R∗ ∂φ

∂Z∗ = 4

(
∂φ

∂R∗

)2

+
1

q̄2

(
∂φ

∂Z∗

)2

,

to leading order, where φ = Da1/2ϕ, and this is identical to (A 2a). The region IIa
solution for the temperature is given by

T = 1 + Da−γ̃ exp(−Da ϕ),

and in region IIIa we have

T = 1 + Da−γ /2 exp
(
−Da1/2φ

)
,

and, since φ = Da1/2ϕ, the exponential term is the same in both regions. The term in
front of the exponential will be affected by the next-order solutions for φ and ϕ so
at leading order it is not necessary for these two terms to match. We conclude that
the leading-order temperatures in regions IIa and IIIa match as R∗, |Z∗| → ∞. In a
similar manner it follows that the streamfunctions also match to leading order.

A.3. Solution for φ

We solve (A 2a) by writing it as a system of characteristic ordinary differential
equations in terms of a parameter t (John 1978). Rewriting (A 2a) as

F (R∗, Z∗, φ, P, Q) = 2R∗Q + 4P2 +
1

q̄2
Q2 = 0, (A 4)

where

P =
∂φ

∂R∗ , Q =
∂φ

∂Z∗ ,
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the characteristic equations are then given by

dR∗

d t
= 8P,

dZ∗

d t
= 2R∗ +

2Q
q̄2

,
dφ

d t
= −2R∗Q,

dP
d t

= −2Q,
dQ
d t

= 0.

On solving these, we obtain

R∗ = −8at2 + 8bt + f, (A 5a)

Z∗ = −16

3
at3 + 8bt2 + 2f t +

2at

q̄2
+ g, (A 5b)

φ =
16

3
a2t3 − 8abt2 − 2af t + h, (A 5c)

P = −2at + b, (A 5d)

Q = a, (A 5e)

where a, b, f , g and h are functions of s that satisfy

dh

ds
= b(s)

df

ds
+ a(s)

dg

ds
,

and (A 4) when t = 0. A simple solution is

a = s, b = s, f = −2s − 1

2q̄2
s, g = 2s +

1

2q̄2
s, h = 0,

and (A 5a–c) become

R∗ = −8st2 + 8st − 2s − 1

2q̄2
s, (A 6a)

Z∗ = −16

3
st3 + 8st2 − 4st +

1

q̄2
st + 2s +

1

2q̄2
s, (A 6b)

φ =
16

3
s2t3 − 8s2t2 + 4s2t +

1

q̄2
s2t. (A 6c)

Dividing (A 6b) by (A 6a) eliminates s and, after rearranging the result, we obtain a
cubic equation for t ,

t3 − 3

2

(
Z∗

R∗ + 1

)
t2 +

3

2

(
Z∗

R∗ +
1

2
− 1

4q̄2

)
t − 3

8

(
Z∗

R∗ +
1

4q̄2

Z∗

R∗ + 1 +
1

4q̄2

)
= 0. (A 7)

On solving this, the solution for t can be substituted into (A 6c) and, using (A 6a) to
eliminate s, we obtain

φ =
4q̄2R∗2(16q̄2t3 − 24q̄2t2 + 12q̄2t + 3t)

3(16q̄2t2 − 16q̄2t + 4q̄2 + 1)2
. (A 8)

The appropriate root of (A 7) is determined by the boundary conditions on φ as
Z∗ → −∞ and R∗ → ∞, given in (A 3). Figure 16 shows the real and imaginary parts
of the roots of (A 7) for a range of values of x =Z∗/R∗. We take the real, positive
root, which for x > −1 is t1, shown as the solid line in the figure, and for x � −1 is
t2, the dot-dashed curve in the figure. The solution for φ, after making this choice for
t , is shown in figure 17.

The solution in region IIIa is therefore given by

T = 1 + Da−γ exp(−Da φ),
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Figure 16. Roots of the cubic equation, (A 7). (a) Re (t), (b) Im (t).
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Figure 17. Solution for φ.

ψ = −1

2
− Da−1 C

2
+ Da−3/2 CR∗

2
+ Da−1 R∗2

2
+ Da−(γ+2) exp (−Da φ) ,

where φ is given by (A 8) and t is the root of (A 7) which gives the correct behaviour
of φ at each point (R∗, Z∗) as described. We must compare this solution to the
numerical solution in region II to determine whether they match in the appropriate
limit.

A.3.1. Matching between regions II and IIIa

As we match to region II, the region IIIa variables become large and positive. The
correct solution of (A 7) in this case is given by

t =
1

4R∗q̄
T +

1

4R∗q̄
(R∗2

+ 4q̄2Z∗2
)

1

T +
1

2

Z∗ + R∗

R∗ ,

where T is given by

T =
(
2q̄(4q̄2 + 3)R∗3

+ 6q̄Z∗R∗2
+ 8q̄3Z̄∗3

+ R∗[(64q̄6 + 96q̄4 + 36q̄2 − 1)R∗4

+ (96q̄4 + 72q̄2)R∗3
Z∗ + 24q̄2R∗2

Z∗2
+ (128q̄6 + 96q̄4)R∗Z∗3

+ 48q̄4Z∗4
]1/2

)1/3
.

In terms of the region II variables we find that to leading order
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Figure 18. Comparison between solutions in regions II and IIIa. (a) fT , (b) fψ .

t ∼ 3

2
Da2 z′

(1 − r2)
.

Substituting this into the expression for φ and taking the leading-order terms we get

φ ∼ Da−1 (1 − r2)3

18z′ .

The region IIIa solutions in terms of r and z′ are therefore

T = 1 + Da−γ exp

(
− (1 − r2)3

18z′

)
, (A 9a)

ψ = −
(

r2 − r4

2

)
+ Da−γ −2 exp

(
− (1 − r2)3

18z′

)
, (A 9b)

to leading order. We expect that the small correction to the solution in region IIIa
will give an O(1) contribution in region II to match with the numerical solution
obtained here. The multiplier in front of the exponential term could be found from
the next-order solution for φ, and the value of γ chosen to make this term O(1) in
region II. However, our solution for T satisfies

∂T

∂z′ =
(1 − r2)3

18z′2 (T − 1) ,

which gives the leading-order behaviour for T , at small z′, without calculating the
next-order correction for φ. Similarly, the small-z′ behaviour of the streamfunction,
ψ , is given by

∂ψ

∂z′ =
(1 − r2)3

18z′2

(
ψ +

(
r2 − r4

2

))
.

Substituting the region II solution into the expressions

fT = z′2 ∂T

∂z′ − (1 − r2)3

18
(T − 1) ,

fψ = z′2 ∂ψ

∂z′ − (1 − r2)3

18

(
ψ +

(
r2 − r4

2

))
,

we expect to find that fT and fψ → 0 as z′ → 0. Figure 18 shows these functions for
small z′, confirming that the solutions in regions II and IIIa match in the limit z′ → 0.
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